International Journal of Physiology, Sports and Physical Education

ISSN Print: 2664-7710 ISSN Online: 2664-7729 Impact Factor: RJIF 8.28 IJPSPE 2025; 7(2): 345-349 www.physicaleducationjournal.net Received: 05-07-2025 Accepted: 08-08-2025

Thingnam Premchandra Singh

Research Scholar, Department of Physical Education, Panjab University, Chandigarh, India

Thingnam Nandalal Singh

Professor, Department of Physical Education, Panjab University, Chandigarh, India

Rastam Thingnam

Research Scholar, Department of Physical Education, Panjab University, Chandigarh, India

Mayanglambam Rakeshsunder Singh

Assistant Professor, Department of Sports Coaching, National Sports University, Imphal, Manipur, India

Corresponding Author: Thingnam Premchandra Singh Research Scholar, Department of Physical Education, Panjab University, Chandigarh, India

Effect of 12-week plyometric training program on kinematic parameters in high school students

Thingnam Premchandra Singh, Thingnam Nandalal Singh, Rastam Thingnam and Mayanglambam Rakeshsunder Singh

DOI: https://www.doi.org/10.33545/26647710.2025.v7.i2e.174

Abstract

This study investigates the impact of 12-week plyometric training program on the kinematic parameters of high school students. This study includes thirty (30) students, who were split into two groups (the experimental group and the controlled group), each consisting of fifteen (15) students, using a random group design. Except for their regular activities, the controlled group (CG) was not permitted to take part in the training program. To develop kinematic parameters in high school students, a plyometric training program was given to the experimental group. The kinematic parameters are step frequency, stride length and velocity in 30-metre and 50-metre sprints. Data were collected in two parts: pre- and post-12-week training programs, using the Kinovea Software. Subjects were informed about the purpose of the study and how to execute the test by demonstration. To compare the mean differences between the pre- and post-test scores in each criterion measure, a paired 't'-test was applied by using SPSS. To test this hypothesis, the level of significance was set at 0.05. Based on the findings of this study, it is concluded that 12 weeks of plyometric training resulted in significant improvements in step frequency, stride length and velocity in both 30-metre and 50-metre sprints among high school students. However, no significant improvement was observed in either of the control groups.

Keywords: Kinematics, plyometric, step frequency, stride length, velocity

Introduction

Plyometric training, defined by rapid stretch-shortening cycle (SSC) movements that facilitate a swift transition from eccentric to concentric muscle contractions, has become an essential element of youth athletic development and performance improvement (Markovic & Mikulic, 2010; Turner & Jeffreys, 2010) [14, 25]. The process of the stretch-shortening cycle, which involves rapid stretching and contraction of muscle reinforces the effectiveness of plyometric training. The elastic energy that is generated during the stretching phase is used to enhance the force in the following concentric phase (Komi & Gollhofer, 1997) [9]. Systematic reviews and meta-analyses consistently show that well-designed plyometric training programs following proper supervision and progressive principles can safely and effectively improve physical parameters in children and adolescents with minimal risk of complications (Behm et al., 2017; Ramirez-Campillo et al., 2018; Stojanovic et al., 2017) [1, 19, 24]. Sprint performance is a complex athletic ability primarily influenced by the interaction of step frequency and stride length, which collectively dictate running velocity according to the biomechanical equation: velocity = stride length × step frequency (Brughelli et al., 2011; Morin et al., 2012) [2, 17]. Plyometric training causes a great variation in kinematic characteristics. The explosion characteristics of SSC workouts are connected to increasing the force applied to the ground in the stance phase of running and the limb adjustment in the flight phases (Jimenez-Reyes et al., 2014; Ramirez-Campillo et al., 2014) [8, 20].

Kinovea is an affordable and accurate tool for studying two-dimensional kinematic analysis. (Perez-Castilla *et al.*, 2019) ^[18]. The present-day physical education curriculum gradually concerns on inclusive physical fitness development and encourages lifelong physical activity, making plyometric training a notable addition to the traditional program (Vaczi *et al.*, 2013) ^[26]. The focus on short-distance sprint performance, particularly at 30-meter and 50-meter intervals, highlights the practical importance of this training for young athletic development

and sport-specific training programs (Grosset *et al.*, 2009; Lloyd *et al.*, 2012) ^[7, 12]. The focus on this short distance indicates essential stages of sprint performance, including the acceleration phase and the transition to maximum velocity growth, which are very important for success in many sports and physical activities (Chen *et al.*, 2023) ^[3]. Various study into sprint kinematics over various distances shows that plyometric training can significantly improve step frequency, stride length, and overall velocity by improving neuromuscular function and movement mechanics (Chen *et al.*, 2024; Kubo *et al.*, 2007; Lloyd *et al.*, 2016) ^[4, 10, 12]. The use of plyometric training in modern physical education programs has been proven both feasible and effective in improving athletes' physical fitness and sport performance (Zhang *et al.*, 2025) ^[27].

Plyometric training programs prepare sports persons to improve explosivity and speed that enhance sport performance (Deng et al., 2024; Lloyd et al., 2013) [6, 13]. Using video to analyse how your body is moving is a valid way to check for changes in your training programme. According to Perez-Castilla et al. (2019) [18] plyometric training can improve step frequency, stride length, and velocity in 6 weeks. It was hypothesised that the experimental group would see significant improvements in all kinematic parameters and there would be no significant improvement in any of the kinematic variables of the control group, which was consistent with principles of training and adaptation (Chen et al., 2024; Moran et al., 2019; Ramirez-Campillo et al., 2014) [4, 16, 20]. This study addresses this gap by investigating the effect of a 12-week plyometric training program on step frequency, stride length and velocity in 30 metre and 50 metre sprints among high school students. The purpose of this study is to contribute evidence-based insights into an adolescent-specific training programme. The findings of this study may inform coaches and physical educators on optimising training schedules to enhance sprint performance during critical developmental stages.

Statement of the problem

The objective of the study is to investigate the effect of 12-week plyometric training program on kinematic parameters in high school students.

Methods and procedure

This is a true experimental design conducted to investigate the effect of 12-week plyometric training program on the kinematic parameters in high school students. The study included thirty (30) students between the ages of 14-16 years and students who had medical problems were excluded from the study. A random group design was adopted to divide the thirty (30) students into two groups (experimental group and control group) of fifteen (15) students in each training group. The controlled group (CG) was excluded from the training program, except as part of their daily routine. The experimental group was given a plyometric training program to develop kinematic parameters. The kinematic variables are step frequency, stride length, and velocity in 30-metre and 50-metre sprints. Data were collected in two parts, as pre- and post-training of a 12-week program using the Kinovea Software. Students were informed about the purpose of the study and how to execute the test by demonstration. To compare the mean differences between the pre-test and post-test scores in each criterion measure, a paired 't'-test was applied by using SPSS. To test the hypothesis, the level of significance was set at 0.05.

Results and Findings

The Analysis of all the collected data, their results and discussion are systematically presented as follows.

A comparative analysis of pre-test and post-test of plyometric training group on kinematic variables (step frequency, stride length, and velocity) in 30-metre and 50-metre sprints is presented in Table 1.

Table 1: Comparison of pre-test and post-test of plyometric training group on kinematic parameters (step frequency, stride length, and velocity) in 30-metre and 50-metre sprints

Variable	Testing Condition	Mean	SD	SEM	't'	Sig.
Step Frequency in 30M Sprint	Pre-Test	3.55	0.32	0.08	5.20	0.00*
	Post-Test	3.99	0.46	0.12		
Step Frequency in 50M Sprint	Pre-Test	4.10	0.32	0.08	1.98	0.00*
	Post-Test	4.56	0.56	0.14		
Stride Length in 30M Sprint	Pre-Test	1.45	0.10	0.03	10.72	0.00*
	Post-Test	1.53	0.12	0.03		
Stride Length in 50M Sprint	Pre-Test	1.52	0.09	0.02	8.79	0.00*
	Post-Test	1.58	0.09	0.02		
Velocity in 30M Sprint	Pre-Test	5.17	0.42	0.11	8.33	0.00*
	Post-Test	6.06	0.46	0.12		
Velocity in 50M Sprint	Pre-Test	6.23	0.52	0.13	6.67	0.00*
	Post-Test	7.13	0.65	0.17	0.67	

^{*}Significant at 0.05

Table-1 shows the Mean \pm SD of pre-test and post-test of plyometric training on step frequency in 30m sprint as $3.55\pm0.32~\&~3.99\pm0.46$ and step frequency in 50M Sprint as $4.10\pm0.32~\&~4.56\pm0.56$. The p-values were found to be statistically significant as the values obtained were 0.00^* and 0.00^* , which were less than the 0.05 level of significance.

The Mean \pm SD of pre-test and post-test of plyometric training on stride length in 30m sprint as 1.45 \pm 0.10 & 1.53 \pm 0.12 and stride length in 50M Sprint as 1.52 \pm 0.09 &

1.58±0.09. The p-values were found to be statistically significant as the values obtained were 0.00* and 0.00*, which were less than the 0.05 level of significance.

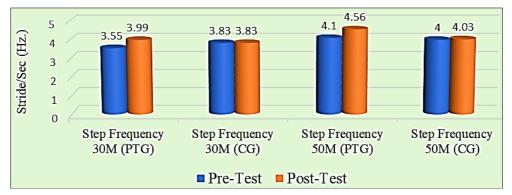
Further, Table-1 shows the Mean \pm SD of pre-test and posttest of plyometric training on velocity in 30m sprint as 5.17 \pm 0.42 & 6.06 \pm 0.46 and velocity in 50m sprint as 6.23 \pm 0.52 & 7.13 \pm 0.65. The p-values were found to be statistically significant as the values obtained were **0.00*** and 0.00*, which were less than the 0.05 level of significance.

A comparative analysis of pre-test and post-test of the control group on kinematic variables (step frequency, stride length, and velocity) of high school students is shown in table 2.

Table 2: Comparison of pre-test and post-test of control group on kinematic parameters (step frequency, stride length, and velocity) in 30-metre and 50-metre sprints

Variable	Testing Condition	Mean	SD	SEM	't'	Sig.
Step Frequency in 30M Sprint	Pre-Test	3.83	0.28	0.07	0.18	0.86
	Post-Test	3.83	0.30	0.08		
Step Frequency in 50M Sprint	Pre-Test	4.00	0.42	0.11	0.97	0.35
	Post-Test	4.03	0.45	0.11		
Stride Length in 30M Sprint	Pre-Test	1.42	0.10	0.03	1.633	0.12
	Post-Test	1.43	0.11	0.03		
Stride Length in 50M Sprint	Pre-Test	1.51	0.06	0.01	0.408	0.69
	Post-Test	1.51	0.06	0.01		
Velocity in 30M Sprint	Pre-Test	5.43	0.21	0.05	1.63	0.12
	Post-Test	5.46	0.25	0.06		
Velocity in 50M Sprint	Pre-Test	6.02	0.55	0.14	1.59	0.13
	Post-Test	6.06	0.59	0.15		

^{*}Significant at 0.05


Table-2 shows the Mean \pm SD of pre-test and post-test of the control group on step frequency in 30m sprint as $3.83\pm0.28~\&~3.83\pm0.30$ and step frequency in 50m sprint as $4.00\pm0.42~\&~4.03\pm0.45$. The p-values were found to be statistically insignificant as the values obtained were 0.86 and 0.35, which were more than the 0.05 level of significance.

The Mean \pm SD of pre-test and post-test of the control group on stride length in 30m sprint as 1.42 ± 0.10 & 1.43 ± 0.11 and stride length in 50m sprint as 1.51 ± 0.06 & 1.51 ± 0.06 . The p-values were found to be statistically insignificant as the values obtained were 0.12 and 0.69, which were more than

the 0.05 level of significance.

Further, table-2 shows the Mean \pm SD of pre-test and posttest of the control group on velocity in 30m sprint as 5.43 \pm 0.21 & 5.46 \pm 0.25 and velocity in 50m sprint as 6.02 \pm 0.55 & 6.06 \pm 0.59. The p-values were found to be statistically insignificant as the values obtained were 0.12 and 0.13, which were more than the 0.05 level of significance.

The graphical representation of pre-test and post-test of the plyometric training group (PTG) and the control group (CG) on kinematic parameters (step frequency) is depicted in fig.1.

Fig 1: Graphical Presentation of Pre-Test and Post-Test Of Plyometric Training Group and Control Group on Kinematic Parameters (Step Frequency)

The graphical representation of pre-test and post-test of the plyometric training group (PTG) and the control group (CG)

on kinematic parameters (stride length) is depicted in fig.2.

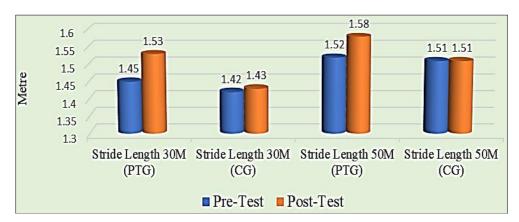


Fig 2: Graphical Presentation of Pre-Test and Post-Test Of Plyometric Training Group and Control Group on Kinematic Parameters (Stride Length)

The graphical representation of pre-test and post-test of the plyometric training group (PTG) and the control group (CG)

on kinematic parameters (velocity) is depicted in fig.3.

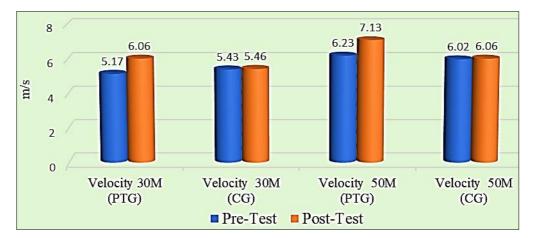


Fig 3: Graphical Presentation of Pre-Test and Post-Test Plometric Training Group and Control Group on Kinematic Parameters (Velocity)

Discussion of Findings

This study found that after 12 weeks of plyometric training step frequency, stride length and velocity significantly improved in both 30m and 50m sprints. This agrees with the literature, which states plyometric training can improve the sprint kinematics of youth (Markovic & Mikulic, 2010; Ramirez-Campillo et al., 2018) [14, 19]. In line with the kinematic improvements shown in the high school students, Miller et al. (2006) [15] found that 6 weeks of plyometric training increased 40M sprint velocity by 2.5% in physically active guys while also causing substantial increases in stride length and step frequency. The observed kinematic alterations were also supported by Saez-Saez de Villarreal et al. (2012) [23], who discovered that 7 weeks of plyometric training increased young athletes' 20M sprint velocity by 2.8% due to better stride efficiency and step rate. Furthermore, Rimmer and Sleivert (2000) [21] showed that teenage athletes who received 8 weeks of plyometric training enhanced their explosive power by 3.0% in 30M sprints by increasing stride length and step frequency. Together, these investigations support the idea that plyometric exercise can improve kinematic variables, which is in line with the findings of the high school students. The limited changes in the control group suggest that the improvements in the experimental group were due to specific changes in the neuromuscular system. These changes were brought about through participation in plyometric activities, rather than the passage of time or other external events. This supports the idea of training specificity and the effectiveness of targeted treatments to enhance sprint performance (Lloyd et al. 2016 Stojanovic et al. 2017). The results show that plyometric training should be added to juvenile sport activities to improve sprint mechanics and athletic development generally.

Conclusion

Based on the findings of this study, the following conclusions were drawn:

- 1. It was concluded from the findings that twelve weeks of plyometric training showed significant improvement in the step frequency, stride length and velocity in 30 metre sprints of high school students. However, an insignificant improvement was observed in the control group.
- 2. The findings of the study proved that twelve weeks of plyometric training showed significant improvement in step

frequency, stride length and velocity in 50 metre sprints of high school students. However, no significant improvement was observed in the control group.

References

- Behm DG, Young JD, Whitten JH, Reid JC, Quigley PJ, Low J, Li Y, Lima CD, Hodgson DD, Chaouachi A, Prieske O, Granacher U. Effectiveness of traditional strength vs power training on muscle power, strength, and speed with youth: a systematic review and metaanalysis. Front Physiol. 2017;8:423.
- 2. Brughelli M, Cronin J, Chaouachi A. Effects of running velocity on running kinetics and kinematics. J Strength Cond Res. 2011;25(4):933-9.
- 3. Chen ZR, Lo SL, Wang JH, Yu CF, Peng HT. The effect of training experience on plyometric training-induced improvements in explosive actions. Appl Sci. 2023;13(9):5538.
- 4. Chen ZR, Wang YH, Peng HT, Yu CF, Wang MH. Optimizing plyometric training: effects of training variables on training adaptations in male youth athletes. J Sports Sci Med. 2024;23(1):52-65.
- 5. Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 2—plyometric training considerations for improving maximal power production. Sports Med. 2010;40(10):793-815.
- 6. Deng N, Soh KG, Zaremohzzabieh Z, Abdullah B, Salleh KM, Huang D. Effects of plyometric training on skill and physical performance in healthy tennis players: a systematic review and meta-analysis. Front Physiol. 2024;15:1387394.
- 7. Grosset JF, Mora I, Lambertz D, Perot C. Voluntary activation of the triceps surae in prepubertal children. J Electromyogr Kinesiol. 2009;19(2):e26-e33.
- 8. Jimenez-Reyes P, Samozino P, Cuadrado-Penafiel V, Conceição F, Gonzalez-Badillo JJ, Morin JB. Effect of countermovement on power-force-velocity profile. Eur J Appl Physiol. 2014;114(11):2281-8.
- 9. Komi PV, Gollhofer A. Stretch reflexes can have an important role in force enhancement during SSC exercise. J Appl Biomech. 1997;13(4):451-60.
- 10. Kubo K, Kanehisa H, Fukunaga T. Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures *in vivo*. J Physiol. 2007;538(1):219-26.

- Lloyd RS, Cronin JB, Faigenbaum AD, Haff GG, Howard R, Kraemer WJ, Micheli LJ, Myer GD, Oliver JL. National Strength and Conditioning Association position statement on long-term athletic development. J Strength Cond Res. 2016;30(6):1491-509.
- 12. Lloyd RS, Oliver JL, Hughes MG, Williams CA. Agerelated differences in the neural regulation of stretch-shortening cycle activities in male youths during maximal and sub-maximal hopping. J Electromyogr Kinesiol. 2012;22(1):37-43.
- 13. Lloyd RS, Read P, Oliver JL, Meyers RW, Nimphius S, Jeffreys I. Considerations for the development of agility during childhood and adolescence. Strength Cond J. 2013;35(3):2-11.
- 14. Markovic G, Mikulic P. Neuromusculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010;40(10):859-95.
- 15. Miller MG, Herniman JJ, Ricard MD, Cheatham CC, Michael TJ. The effects of a 6-week plyometric training program on agility. J Strength Cond Res. 2006;20(4):837-42.
- 16. Moran J, Clark CC, Pritchard L, Sandercock GR, Parry DA. Effects of plyometric training on sprint and jump performance in female athletes: a meta-analysis. J Hum Kinet. 2019;68(1):99-119.
- 17. Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112(11):3921-30.
- 18. Perez-Castilla A, Piepoli A, Delgado-Garcia G, Garrido-Blanca G, Garcia-Ramos A. Reliability and concurrent validity of seven commercially available devices for the assessment of movement velocity at different intensities during the bench press. J Strength Cond Res. 2019;33(5):1258-65.
- Ramirez-Campillo R, Alvarez C, Garcia-Hermoso A, Ramirez-Velez R, Gentil P, Asadi A, Chaabene H, Moran J, Meylan C, Garcia-de-Alcaraz A, Sanchez-Sanchez J, Nakamura FY, Granacher U, Kraemer W, Izquierdo M. Methodological characteristics and future directions for plyometric jump training research: a scoping review. Sports Med. 2018;48(5):1059-81.
- Ramirez-Campillo R, Meylan C, Alvarez C, Henriquez-Olguín C, Martinez C, Canas-Jamett R, Andrade DC, Izquierdo M. Effects of in-season low-volume high-intensity plyometric training on explosive actions and endurance of young soccer players. J Strength Cond Res. 2014;28(5):1335-42.
- 21. Rimmer E, Sleivert G. Effects of a plyometrics intervention program on sprint performance. Med Sci Sports Exerc. 2000;32(5):1148-55.
- 22. Roberts BM, Nuckols G, Krieger JW. Sex differences in resistance training adaptations. J Strength Cond Res. 2020;34(7):2001-10.
- 23. Saez-Saez de Villarreal E, Requena B, Newton RU. Does plyometric training improve strength performance? A meta-analysis. J Sports Sci. 2012;30(14):1487-96.
- 24. Stojanovic E, Ristic V, McMaster DT, Milanovic Z. Effect of plyometric training on vertical jump performance in female athletes: a systematic review and meta-analysis. Sports Med. 2017;47(5):975-86.

25. Turner AN, Jeffreys I. The stretch-shortening cycle: proposed mechanisms and methods for enhancement. Strength Cond J. 2010;32(4):87-99.

https://www.physicaleducationjournal.net

- 26. Vaczi M, Tollar J, Meszler B, Juhasz I, Karsai I. Short-term high intensity plyometric training program improves strength, power and agility in male soccer players. J Hum Kinet. 2013;36(1):17-26.
- 27. Zhang Y, Soh KG, Mohammadi A, Toumi Z, Ayala F, De Ste Croix M, Bizzini M. Effects of plyometric training on neuromuscular performance in youth basketball players: a systematic review and meta-analysis. Healthcare (Basel). 2025;11(5):792.